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Abstract- An efficient direct differentiation method by continuum approach is presented for the
shape design sensitivity analysis of axisymmetric elastic solids. The method is purely based on the
axisymmetric boundary integral equation formulation. A new boundary integral equation for
sensitivity analysis is derived by taking material derivative to the same integral identity that was
used in the adjoint method. As sensitivities in terms of the shape design variables are directly
calculated by solving the new BIE, the singular boundary condition which may arise in the adjoint
method is avoided in the present direct method.

To validate the theoretical formulation, numerical implementation is done for three examples.
For a hollow disk and a thick-walled cylinder problem with analytic solution, the sensitivities by
present method are compared with analytic sensitivities. For an example of a spherical vessel, being
rather practical, the sensitivities are compared with those by finite differences. Copyright (j'j 1996
Elsevier Science Ltd

INTRODUCTION

The shape optimization problem is to find the optimal structural shape minimizing an
objective function under prescribed constraints. For the numerical shape optimization
using the mathematical programming technique, the sensitivity of the state variables, e.g.,
displacements and stresses, with respect to the boundary shape has to be calculated. Because
inaccurate prediction of the sensitivity may increase the number of iterations to be taken
and result in a divergent solution, it is very important to analyze the sensitivity accurately
and efficiently during each iteration step.

In this point of view, continuous research efforts have been given to the area of the
shape design sensitivity analysis (SDSA) based on the finite element method (FEM) [for a
survey, see the recent paper of Chen and Choi (1994)]. While the FEM has been used as a
popular tool for the SDSA, the boundary element method (BEM) has appeared as an
alternative to the FEM. It results from the fact that we can obtain a relatively more accurate
boundary solution and moreover, remeshing is very convenient when using the BEM instead
of the FEM for the shape optimization. For this reason, considerable efforts have been
devoted to research on the SDSA using the boundary element method (BEM) and numerous
papers have appeared [see, for survey, Burczynski (1993)]. Since Mota Soares et al. (1984)
used the BEM only as a tool for the solution of state equations, a lot of researchers have
devoted time to developing a general method of the SDSA, whose background is based on
the boundary integral equation (BIE) or the BEM. Choi and Kwak (1988) and Lee and
Kwak (1991, 1992) have developed an adjoint variable method based on the BIE formu
lation. They derived adjoint systems by taking material derivative [Haug et al. (1986)] to
the integral identity obtained from the direct and indirect BIE. A direct differentiation
method has been presented by Barone and Yang (1988, 1989) for two and three-dimensional
elasticity problems and by Rice and Mukherjee (1990) for axisymmetric elasticity problems,
where the shape sensitivities are directly obtained by solving a BIE for sensitivity calculation.
To overcome the singular boundary condition problem that may occur in the adjoint
method, Choi and Choi (1990) and Choi and Kwak (1990) have presented a direct method
by differentiating the same integral identity that was used in the adjoint method. The
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above described methods belong to a continuum approach, where a complete sensitivity
formulation is derived first and then discretization by boundary elements followed. Another
direct method is an implicit differentiation by Kane and Saigal (1988), where the coefficient
matrices formed by the discretized BIB are differentiated. Saigal et al. (1989) have applied
the method to axisymmetric elasticity problem.

This paper presents the direct differentiation method of the SDSA as applied to the
axisymmetric elasticity problem. The method of Choi and Kwak (1990) confined to the
two-dimensional problem is extended to the axisymmetric problem and a new BIE for the
SDSA is derived. Saigal et al. (1989) have dealt with the axisymmetric problem but have
used the implicit differentiation method. The method of Rice and Mukherjee (1990) on the
axisymmetric problem covers the direct differentiation approach but the present method is
basically different from their one. Present work completes the concept of the unified adjoint
and direct approach using the axisymmetric BIB formulation, where a boundary integral
identity is derived from the direct and indirect BIEs and the material derivative is taken.
From the same differentiated equation, the sensitivity formula can be derived by introducing
the adjoint variables as described in the adjoint method of Lee and Kwak (1992) or a new
BIB for the direct sensitivity calculation can be derived as presented in the current paper.
In this unified approach, which of the two methods is to be selected will depend on the
numbers of the design variables and the performance functions of the shape optimization
problem.

The theoretical formulation is validated by a numerical implementation of three
examples: a hollow disk and a thick-walled cylinder problem with analytic solution and
a spherical pressure vessel problem. For the two examples with analytic solutions, the
sensitivities by the present method are compared with the analytic sensitivities. For the
hollow disk problem, the result is also compared with that from Saigal et al. (1989) using
the implicit differentiation method. For the spherical pressure vessel problem without
analytic solution, the sensitivities are compared with those by finite differences.

BIE FORMULATION

An axisymmetric elasticity problem is considered for an isotropic and homogeneous
solid body of arbitrary shape. The body can be represented as shown in Fig. I using a
cylindrical coordinate system. The domain n and boundary r are defined in the symmetric
section on the (R, Z) plane. The position in this plane will be denoted by x or xo. Coordinates
of points x and Xo are represented by (R, Z) and (Ro, Zo), respectively. If the displacement
vector is denoted by u(x) = {UR' uz}, then the strain and stress tensors are expressed as

GU(u) = ~(Ui.j +uj,J, i,j = R, Z

(I)

where A and J1 represent Lame's constants. Ifwe consider the case without the body forces,
the equilibrium equation is given by

r u

Fig. I. An axisymmetric elasticity problem.
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O"RR(U) -O"HO(U)
O"RR,R(U)+O"RZ.Z(U) + R =0

O"RZ(U)
O"Rz'R(U) + O"ZZ'z(U) + -R- = O.
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(2)

A tensor notation is used from now on, with the indices representing an R or Z component.
The boundary conditions are given on the boundary r = r u +C as

U,(X) = UiO(X), XEru

tj(u) == O"u(u)n/x) = tiO(x), XEC (3)

where ni represents the outward unit normal vector and t j the surface traction on the
boundary. The displacement UiO(X) and surface traction tiO(x) are prescribed on r u and r t ,

respectively, as shown in Fig. 1.
Using the BIE formulation described in Lee and Kwak (1992), an integral identity is

derived now for the axisymmetric elasticity problem. The problem can be formulated into
the direct BIE by applying Somigliana's identity as follows [Bakr (1986), Banerjee and
Butterfield (1981), Brebbia et at. (1984)]:

where ds represents integration with respect to x along r, and clj(.~o) is a function of the
geometry of r. The kernels Gij(x l), x) and FIj(xo, x) are ring-type fundamental solutions for
displacement and surface traction, respectively. Now, an arbitrary function pt defined on
the boundary can be introduced. For Xo E r, eqn (4) can be transformed into the following
equation by multiplying pt and integrating over r as

where dso represents integration with respect to Xo along r. On the other hand, an arbitrary
axisymmetric system of displacement ui and surface traction ti may be considered, which
can be expressed by the indirect BIE formulation [Banerjee and Butterfield (1981)] as

Ui(X) = f,Ptexo)Gi/xo,X)RodSo, xd~ur

ti(u*(x)) = Ci/x)pt(x) + f,Pt(Xo)Fi/xo,X)RodSo, XEr (6)

where pt in this case can be interpreted as the fictitious source density distributed on r.
Substituting eqn (6) into (5) and using (4) for Xo in Q, the following boundary integral
identity is obtained:

f, {u/i(u*) - t/u)ui} R ds = O. (7)

This identity corresponds to Betti's reciprocal theorem for two arbitrary equilibrium states
[Timoshenko and Goodier (1970)] : one with U i and t" and the other with ut and tt, Although
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the identity (7) was used to derive the adjoint system in the adjoint variable method by Lee
and Kwak (1992), it will be used in this paper to derive a new BIE for direct calculation of
design derivatives.

METHOD OF SDSA

Based on the BIE formulation in the previous section, the direct differentiation method
for the SDSA of axisymmetric elastic solids is now presented. The material derivative as
shown in Haug et al. (1986) is taken to the boundary integral identity (7). After some
manipulations and simplifications, the resulting equation can be written as

where it; and t~ represent the material derivative, V = {VR , Vz } the design velocity vector, Si

the unit tangential vector on the boundary, 6i} the Kronecker delta and

(9)

Since uj and tj are defined in the form of the indirect BIE (6), u/., in eqn (8) can be expressed
as

(10)

where the coefficient dij appears as a result of the singularity of the kernel Pi;(Xo , x) when
the source point Xu coincides with the field point x. The new kernel Pij can be derived by
taking a tangential derivative to the kernel Gil' as

(11 )

GijJ is described in Appendix A. Substituting uj, tj and u/., of the indirect BIEs (6) and (10)
into (8) and enforcing that the resulting equation holds for arbitrary source density p~ on
the boundary, the following BIE for the material derivatives of displacement and surface
traction is obtained.

where the arguments X o and X are omitted for simplicity and the superscript 0 represents
the value at xo. Although this equation looks very complicated, it is seen that it can be
obtained by simply replacing uj, t'! and u/.1 in eqn (8) by Gij, Fij and Pij, respectively, and
that the coefficients cZ and dZ appear from singularity of the kernels.

It is observed that strong singularity of order O(//r) arises by the kernels Fij and Pij in
numerical integration. The singular integration from the kernel Fij can be avoided by use
of modes of deformation. Because a rigid body translation in the Z direction gives zero
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surface traction (UR = 0, Uz = 1, tR= tz = 0), we obtain from boundary integral identity
(7)

Lt~Rds = O. (13)

For an inflation mode in the R direction, displacements and surface tractions become [Bakr
(1986)]

(14)

and the boundary integral identity (7) becoming

(15)

Now substituting indirect BIE expression (6) into eqns (13) and (15) and enforcing that
the resulting equation hold for arbitrary source density p7 on the boundary, the following
equations can be obtained:

c&+LFizRds = 0

(16)

Multiplying the first and the second equations of (16) by (UZ,k Vk)O and (UR,k Vk)O, respectively,
and summing the resulting two equations, the following equation can be obtained:

= (UR~Vk)O r [2{(A+IL)nROjR+AnZojz}Gij-(R-Ro)OjRFiJRds, XoEr. (17)
° Jr

On the other hand, the singular term including the kernel Pij can be avoided by use of the
uniqueness of displacement as

Ld(ujR) = 0 = L(ujRL ds = L(uj"R +UjSR) ds. (18)

Substituting indirect BIE expressions (6) and (10) into the above equation and taking
similar operations as for the term of the kernel Fij' the following equation can be obtained:

If eqns (17) and (19) are substituted into (12), then the following new BIE for shape
sensitivity is obtained:
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where

(21)

Because the order of (A/-An, (Bj-By) and (R-Ro) are OCr), the first two integral
operators in the right-hand side of eqn (20) are regular. Thus singularity problem is avoided
and standard Gaussian quadrature can be employed for the numerical integration. The
integral operators in the left-hand side of eqn (20) are the same as those of the original
direct BIE (4). Hence, only the right-hand side integrals can be calculated for sensitivity
analysis. Representing the design boundary </J by a set of shape parameters bi' the design
velocity and the material derivatives of displacements and surface tractions are expressed
as

GU
ili = :1b' i5b"

6 j

(22)

If eqn (22) is substituted into (20) and (21), then the sensitivities of displacements and
surface tractions in terms of the shape parameters, i.e., design variables can be directly
solved by implementation of the BEM.

In numerical implementation of the shape optimization problem, stress sensitivities
are usually required. Once the displacement and traction sensitivities are calculated, the
sensitivities of the various stresse~ arising in the axisymmetric elasticity problem can be
calculated by formulas as described in Appendix B.

NUMERICAL EXAMPLES

Three axisymmetric example problems are treated for numerical implementation of
the presented method of the SDSA. Predicted sensitivities are compared with analytic
sensitivities if available and with those by finite differences if not. Numerical calculation is
performed on the SGI Indigo R3000 engineering workstation. Quadratic boundary elements
are used for the implementation of the BIE. For all examples, Young's modulus and
Poisson's ratio are set as 30 x 106 psi and 0.3, respectively.

A hollow disk under uniform external tensile load
The first example is a hollow disk under uniform tensile load on the outer surface. It

is the same example that was treated by Saigal et al. (1989) implementing implicit differ
entiation methods. Analytic solution is given by Timoshenko and Goodier (1970). The
inner radius rJ, outer radius r2 and thickness of the disk are set as 4, 20 and 2 inches,
respectively. The magnitude of the tensile load is 1,000 psi. The inner radius rl is taken as
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1,000 psi------
l

:::::t

:-----------------+.

Fig. 2. A hollow disk under uniform external tensile load.

• represent end nodes of quadratic elements

Fig. 3. A quadratic boundary element model for the hollow disk problem.

105

the design variable. The exact sensitivity expression in terms of the design variable has been
shown by Kane and Saigal (1988).

The disk is discretized by thirty elements as shown in Fig. 3, which is the same mesh
configuration as used by Saigal et al. (1989). The predicted displacement sensitivities by
the present method are listed in Table I and are compared with those by analytic sensitivities
and by Saigal et al. (1989). It is observed that very accurate results are obtained and the
degree of accuracy of present method is as high as Saigal et al. (1989) for this example.

A thick-walled cylinder under internal and external pressure
A thick-walled cylinder problem as shown in Fig. 4 is considered here. The inner radius

r\ and outer radius r2 are set as 10 and 20 inches, respectively. Uniform pressure of 1,000
and 500 psi are applied on the internal and external surface. Analytic solution is also given
by Timoshenko and Goodier (1970). The outer radius r2 is taken as the design variable for
the current example. Analytic sensitivities of displacement, hoop stress and radial stress in
terms of the outer radius r2 can be derived as follows:

Table 1. Displacement sensitivities of the hollow disk problem

Radius Analytic Saigal et al. (1989) Present
_. ----

4.0 0.7523IE-04 0.75228E-04 0.75226E-04
4.3 0.75139E-04 0.75135E-04 0.74916E-04
4.7 0.74480E-04 0.74475E-04 0.74806E-04
5.0 0.73466E-04 O. 73462E - 04 0.73334E-04
5.3 0.72235E-04 0.72231E-04 0.7241IE-04
5.7 0.70875E-04 0.7087IE-04 0.70795E-04
6.0 0.69444E-04 0.69440E-04 0.69546E-04
6.3 0.67982E-04 0.67978E-04 0.67930E - 04
6.7 0.66512E-04 0.66508E - 04 0.66573E-04
7.0 0.65054E-04 0.65050E - 04 0.65017E-04
7.3 o63618E-04 0.63614E-04 0.6365IE-04
7.7 0.62210E-04 0.62206E-04 0.62178E-04
8.0 0.60836E-04 0.60833E-04 0.60935E-04
9.0 0.56933E-04 0.56930E-04 0.56848E-04

10.0 0.53356E- 04 0.53354E - 04 0.53444E - 04
11.0 O.5008IE-04 0.50078E-04 0.50042E-04
12.0 0.47068E-04 0.47065E-04 0.47099E-04
13.0 0.44282E-04 0.44279E-04 0.44264E-04
14.0 O.41690E-04 0.41688E-04 0.41700E-04
15.0 0.39265E - 04 0.39263E-04 0.39255E- 04
16.0 0.36983E-04 0.36980E-04 0.36984E-04
17.0 0.34824E-04 0.3482IE-04 0.34817E-04
18.0 0.32772E - 04 0.32769E - 04 0.32766E-04
19.0 0.30813E-04 0.30810E-04 0.30808E-04
20.0 0.28935E-04 0.28933E-04 0.28930E - 04
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Fig. 4. A thick-walled cylinder under internal and external pressure.

where

duRR aURR aURR dR
~-=~-+~---

dr2 or2 oR dr2

(23)

and partial derivatives of UR, Uo o and 8RR with respect to r2 and R can be obtained by
differentiating analytic solution.

Thirty boundary elements are used to model the cylinder, as shown in Fig. 5. The
sensitivities analyzed by the present method of the SDSA are listed in Table 2 and are
compared with analytic sensitivities. Very accurate results are shown. The worst accuracy
for the radial stress sensitivities arises in the neighborhood of the internal and external
surface, but it is trivial because it occurs on the boundary with sensitivities of relatively
small magnitude.

A spherical vessel with a nozzle
The final example is a spherical pressure vessel with a nozzle, as shown in Fig. 6.

Internal pressure is set as 10,000 psi. Inner radius rl is defined as the design variable. The
spherical vessel is discretized by thirty-two quadratic elements, as shown in Fig. 7.

Generally, von Mises effective stress can be used for a stress constraint criterion in the
shape optimization problem. Hence, sensitivities of von Mises effective stresses are con
sidered for the current example. Because analytic solution is not available, predicted sen
sitivities are compared with those by finite differences. In the method of finite differences,
0.1 per cent change of the design variable is used for the numerical differentiation. Listed
in Table 3 are sensitivities of von Mises effective stresses at the nodes on the external
surface. The maximum error is 9.75 per cent relative to the method of finite differences. It
is seen that the overall accuracy is very favorable.

Fig. 5. A quadratic boundary element model for the thick-walled cylinder problem.



Table 2. Sensitivities of the thick-walled cylinder problem

Displacement sensitivities Hoop stress sensitivities Radial stress sensitivities
Radius Analytic Present Analytic Present Analytic Present

10.0 - 0.134~IE-04 - 0.13482E- 04 -0.44444E+02 -0.44446E+02 O.OOOOOE+OO -0.37152E+Ol !:Xl
0

10.5 -0.14815E-04 -0.14~17E-04 -0.48137E+02 -0.48078E+02 0.36929E+01 0.38834E + 01 <=
;:>

11.0 -0.15957E-04 - 0.15943E- 04 -0.50605E+02 -0.50748E+02 0.61608E+OI 0.56915E+Ol Po

'"11.5 -0.16947E-04 -0.16953E-04 -0.52176E+02 -0.52206E+02 0.77313E+OI 0.76058E+OI ..,
'<

12.0 -0.17815E-04 -0.1780IE-04 -0.53086E+02 -0.53160E+02 0.~6420E+OI 0.84366E+OI (1)

'"12.5 -O.l~5~5E-04 -0.18593E-04 -0.5351IE+02 -0.53517E+02 0.90667E+01 0.90419E+Ol 3
13.0 -0.19276E-04 - 0.19262E - 04 - 0.53578E + 02 -0.53624E+02 0.91337E+Ol 0.90126E+01

(1)

g
13.5 -0.19903E-04 -0.19911E-04 - 0.533~3E + 02 -0.53389E+02 0.89383E+01 0.89097E+Ol '"::r
14.0 -0.20478E-04 -0.20463E-04 -0.52996E+02 -0.53029E+02 0.85520E+Ol 0.84774E+Ol '"'"C
14.5 - 0.21 009E - 04 -0.21017E-04 -0.52473E+02 -0.52479E+02 0.~02~2E+Ol 0.79986E+01 (1)

'"15.0 -0.21506E-04 -0.21492E-04 -0.51852E+02 -0.51876E+02 0.74074E+OI 0.7359~E+OI
(1)
::;

15.5 -0.21974E-04 -0.21982E-04 -0.51165E+02 -0.51171E+02 o67202E+Ol 0.66911E+01 ~.

16.0 -0.22419E-04 -0.22406E-04 -0.50434E+02 -0.50453E+02 0.59896E+OI 0.59575E+Ol ~:

16.5 -0.22845E-04 -0.22852E-04 -0.49678E+02 -0.49684E+02 0.52332E+Ol 0.52039E+OI Q

'"17.0 -0.23254E-04 - 0.23243E - 04 -0.48909E+02 -0.48923E+02 0.44643E+Ol 0.44414E+01 ::;

'"17.5 -0.23652E-04 -- 0.23658E - 04 -0.48137E+02 -0.48147E+02 0.36929E+01 0.36610E+Ol ~
18.0 - 0.24038E - 04 - 0.24029E - 04 -0.4737IE+02 -0.47360E+02 0.29264E+01 0.29198E+OI co'
18.5 -0.24417E-04 - 0.24424E - 04 -0.46615E+02 -0.46568E+02 0.21703E+01 0.24410E+OI
19.0 -0.24789E-04 -0.24770E-04 -0.45873E+02 -0.45820E+02 0.14288E+Ol 0.14244E+01
19.5 -0.25156E-04 -0.25164E-04 -0.45149E+02 - 0.45380E + 02 O. 70466E + 00 -0.14596E+00
20.0 -0.25519E-04 -0.25527E-04 -0.44444E+02 -0.44434E+02 O.OOOOOE+OO -0.63633E+01

o....,
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35 "

Internal pressure
10,000 psi

I
I" ---.-----.-------.-.-----.

rl = 20 "

r2 = 25 "
Fig. 6. A spherical vessel with a nozzle.

CONCLUSION

A new direct differentiation method of the SDSA for axisymmetric elastic solids is
presented based on the boundary integral formulation and numerically implemented. The
present paper completes the concept of the unified adjoint and direct approach using the
axisymmetric BIE formulation. In general, selection from the direct and adjoint methods
depends on the numbers of the design variables and the objective and constraint functions
of the optimization problem under consideration. From the viewpoint of the numerical
calculation, the present direct method gives a clear advantage over the adjoint method. It
results from the fact that the current method avoids the singular boundary condition which

63

3 61
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5 57
7 55 53

51
9 49

11

45
17

19
9 21

23

25

37

31 35
33

Fig. 7. A quadratic boundary element model and node numbers for the spherical vessel problem.
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Table 3. Effective stress sensitivities of the spherical vessel problem

Node Finite difference Present Ratio (%)*

35 OA7688E + 04 OA7049E+04 100.91
36 OA7831E+04 OA7583E+04 99A8
37 OA8162E + 04 OA7787E + 04 99.22
38 OA8486E +04 OA8031 E + 04 99.06
39 OA8723E+04 OA8273E + 04 99.08
40 OA8892E+04 OA8487E + 04 99.17
41 OA8998E+04 0.48657E+04 99.30
42 0.49059E+04 0.48792E + 04 99.46
43 0.49079E+04 OA8893E+04 99.62
44 o.49077E + 04 OA8973E+04 99.79
45 0.49068E+04 0.4904IE+04 99.95
46 0.49064E+04 0.49098E+04 100.07
47 0.49087E+04 OA9151E+04 100.13
48 0.49134E+04 0.49178E+04 100.09
49 o.49226E + 04 0.49176E+04 99.90
50 0.49319E + 04 0.49069E + 04 99.49
51 0.49377E+04 0.48770E+04 98.77
52 0.49152E+04 0.47909E+04 97.47
53 0.48583E + 04 0.46145E+04 94.98
54 OA9125E+04 0.44826E+04 91.25
55 OA2281E+04 0.43774E+ 04 103.53

* Ratio means a percentage value of (Present)/(Finite difference).

might occur when sensItivIties at nodal points are to be found by the adjoint method.
Theoretical formulation is validated through three numerical examples. An implementation
for a practical shape optimization problem is under study to show realistic application of
present work.
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APPENDIX A

Gil,' in eqn (11) is expressed as follows:

{ ,~ (1- R(R+Ro))} { 2'L',2(Roa-Rb)}x K,RRVa+b-K V a + b+ I - 2(3-4v)(R+Ro)+ ,
ya+b (a-b)-

,- { Z2 a }{.- (.~ R(R+Ro))}]
xER-/a+b- (3-4v)(a+h)+ a-b ERR-/a+h-E V a + h+ Ja+b

GRRZ = A b [8(1-V)Z j a+hK+ {(3-4V)(R'+R6)+4(1-V)Z2}
" RRo(a+)

( .~ Z) { _ 2Z(a2 -ah-Z2 .h)} .~
x KzVa+h-K r--- - 2(3-4v)Z+ , E-/a+h

Va+b (a-b)"

{
Z2a}(.~ Z)]- (3-4v)(a+b)+ -h Ez-/a+h-E .-
a- -/a+h

_ AZ [ " ;-- R+Ro 2{R(a-h)-(R2-R6+Z2)(R-Ro)} 1--

GRZ,R - ( b - K R...; a+h+ K ,------ + , E V a+h
Ro a+ ) -/a+h (a-b)"

R'-R6+Z'( - ;-- ,R+Ro )]
+ h fRya+h-E .--

a- -/a+b

A [ .~ _( r--- Z)GRZ.z = b -KVa + h - Z KzVa+h-K ~
Ro(a+ ) -/a+b

(R 2_ R' + 3Z')(a-b) -2Z'(R' -R' +Z') .~+ 0, 0 E-/a+b
(a-h)'

Z(R'-R6+Z')( , I~~ Z)]+ h Ezya+b-E ~
a- -/a+b

AZ [ .~ (.~ R(R+Ro»)GZR,R = , KRRVa+h-K V a + b+ ---'--.-"-'-
W(a+b) -/a+b

2{R(a-bl+ (R6 - R' +Z2)(R-Ro)} ;--+ -------- - _r, ER...; a+b
(a-h)'

R6-R' +Z2{ ;-- (/~ R(R+Ro))}]
- a-h ERRVa+h-E ya+h+ Ja+b

A [ ~ ( r- Z)
GZR,z = R(a+b) KJa+h+Z KzJa+b-K ja+h

(R6 - R' +3Z')(a-b) - 2Z2(R6 - R' +Z2)
- E" a+b

(a-b)'

Z(R6- R2 +Z')( ,,;~ ~)]- b Ezya+b-E ~
a- ...;a+h

2A [ ( .~ R+Ro) 2Z'(R-Ro) 1--
GZZ,R = --b (3-4v) KR-/a+b-K r--- - ,Eya+b

a+ V a + b (a-h)-

Z2 ( .~ R+Ro)]+ --b ERV a + b - E ,------
a- -/a+b

2A [ ( .~ Z) 2Z(a-b)-2Z
3

.~
Gzz,Z = --b (3-4v) Kz-/a+b-K. + E-/a+b

a+ V a + b (a-b)'
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z' ( ~ Z)J+--b Ez...;a+b-E ~
a- . ...;a+b

where v denotes Poisson"s ratio and

III

I
A = ::---:-:------:-

8n:Jl(l- v)

K and E denote the first and the second kind of complete elliptic integral, respectively" as

K(m) = rrr'(l-msin'O-,12dC,
" 0

where

2b
m=--.

a+b

Derivatives of K and E are expressed as

K
R

= 2(Roa-Rb){~ _li-E}
(a+h)' I-m m

K
z

= _ 2bZ {~_ K - E}
(a+bf I-m m

E
R

= _ 2(Roa-Rb){K_ ~-(I-m)K}

(a+b)' m

E z = -'!!!..Z -{K- E-(l-m)K}.
(a+b)' m

APPENDIX B

Various stress components on the boundary can be expressed in terms of the displacements and tractions as
follows:

(J'.IS = (JUSiSf = C j E'\'s+CzEOO+C3 (JmJ

(J'zz = (J/lnn~+(Jssn~+2anSnRnZ

where

and

V
C , =--.

. I-v

Von Mises effective stress can be expressed. considering the axisymmetry, as

Once the state variables and their shape sensitivities are obtained, sensitivities of the various stress components
on the boundary can be calculated by the following formulae:

a.\,\ = C1f.,s+ C2 f.oo + C 3 lTnn
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- a.\sO'O/i - (Juoa,l's + 6ans iJn.>}

where Iii and .i', represent the material derivatives of the normal and tangential unit vectors, respectively, which
can be expressed as follows:

li i = (V,H- V",,)Si

Here Vn and V, represent the normal and tangential components of the design velocity, and H means the curvature
of the boundary, The material derivatives of the strains can be expressed as

t" = U""Si+ui.,n,(V",,- V,H)-I:,.(V"H+ V",)

I
{oo = R{uR-cO{)(nRV,,-nZV,)},


